Pollin

VIM878 HT1621B Display Teil 2

Die Platinen von Oshpark (18.08.2016) und Elecrow (16.08.2016) sind da, es kann losgehen mit dem Displaymodul.

oshpark_elecrow
links oshpark, rechts elecrow

Der silkscreen ist leider verpfuscht. Ich habe aus Bequemlichkeit die Eagle-Dateien geschickt, so dass der Hersteller auch die tnames (Kurznamen z. B. JP1 o.ä.) mitgedruckt hat, eigentlich  sollten es nur die tvalues (Bauteilewerte) und die tplaces (Umrisse der Bauteile) sein.

Es folgt die teilbestückte Platine, am schwierigsten ist die Bestückung des HT1621B, wobei nicht das Löten (mit breiter meißelförmiger Spitze, viel Flußmittel und zügigem Überstreichen) schwierig ist, sondern die richtige Platzierung und Fixierung des Chips:

teilbestückt
teilbestückt

 

teilbestückt
teilbestückt

 

vollbestückt
vollbestückt

 

vollbestückt
vollbestückt

 

vollbestückt
vollbestückt

 

in Funktion
in Funktion (Charakterdarstellung)

 

in Funktion
in Funktion (Zähler)

Leider habe ich erst jetzt gesehen, dass schon jemand vor mir praktisch genau diese Platine gebaut hat:

TWI Display at www.akafugu.jp

Schade, das wäre eine gute Inspiration gewesen.

VIM878 HT1621B Display Teil 1

Seit einiger Zeit gibt es bei Pollin ein LC-Glas zu kaufen, das VIM878 von Varitronics:

www.pollin.de LCD_Modul_VARITRONIX_VIM878

Der HT1621B reicht gerade noch aus, um dieses Glas mit 4 Commons und 32 Segmenten anzusteuern.

Besonders erklärungsbedürftig ist die hierfür konstruierte Hardware nicht, man schließt alle COM-Anschlüsse des HT1621B an die passenden Pins des Displays. Die Segmente 1 .. 16 werden an die Segmentanschlüsse 0 bis 15 des HT1621B angeschlossen, die Segment 32 bis 17 an die Segmentanschlüsse 16-31.

Letzteres ist bewußt in umgekehrter Reihenfolge angeordnet, um die Programmierung zu vereinfachen. Durch die gespiegelte Reihenfolge werden nämlich die Segmente im Speicher des HT1621B in derselben Reihenfolge angeordnet wie die Segmente 1 bis 16. Näheres verrät das Datenblatt des VIM 878 bei analytischer Betrachtung. 😉 (siehe auch meinen Beitrag vom 25.06.2016)

Dieses Mal habe ich auch noch den Buzzer-Anschluß (JP2) mit vorgesehen, für alle Fälle.

Schaltplan:

Schaltplan
Schaltplan

Layout:

Layout
Layout

(bestellt am 31.07.2016 bei oshpark -3 Stück- und am 02.08.2016 bei elecrow -10 Stück-)

VIM878 8 Stellen 14 Segment Display Glas

Bei Pollin gibt es mit dem VIM878 ein spannendes 8-stelliges 14-Segment LC-Display mit Datenblatt zu kaufen. Das möchte ich gern mit meiner HT1621B-Universalplatine testen. Also Datenblatt gründlich lesen:

Datenblattausschnitt Datenblattausschnitt_2

Wenn man die Pins des LCD fortlaufend mit dem HT1621B verdrahtet, werden zunächst die Segmentteile der Digits 1 bis 8 und dann wieder rückwärts laufend von 8 bis 1 den Speicherstellen des Display-RAM zugeordnet. Segmentblock/Pin 1 (1D, 1E, 1F, CA1) liegt dann also auf Adresse 0, Segmentblock/Pin 32 (1M, 1N, 1G, 1H) auf Speicherstelle 31. Das könnte für die Programmierung umständlich werden, da zum Schreiben eines Digit alle zu diesem Digit gehörenden Segmente angeschaltet werden müssen. Man müßte für zwei Teile des Digits aufwärts zählen, für die weiteren zwei Teile dann rückwärts und das mit jeweils unterschiedlichen Abständen im Speicher.

Deshalb habe ich anders verdrahtet. Ich habe die Segmentblöcke 1 bis 16 den Speicheradressen 0 .. 15 zugeordnet und dann die Segmentblöcke 32 bis 21 den Speicheradressen 16 .. 31. Der Abstand zwischen den zusammengehörigen zwei Segmentblöcken (Pin 1, 2, und Pin 32, 31) im Speicher des HT1621B ist jetzt konstant. (Besser wäre natürlich, eine universellere Softwarelösung zu finden, weil es sicher auch Displays geben wird, bei denen die Segmente nicht so strukturiert den Pins zugeordnet sind. Aber Zeit ist wie immer knapp.)

Alles schnell verdrahten und los geht es. Eine Arduino-Bibliothek zum schnellen Testen ist bereits vorhanden, wenn auch für 7-Segment-Displays.

Ein paar Bilder vom Aufbau:

VerkabelungVerkabelung_2 Verkabelung_3 Verkabelung_4 Verkabelung_5

Pollin Display HB10401

Pollin verkauft derzeit o.g. Display aus der Siemens Logo 12/24RC.

Siemens Logo
Siemens Logo

 

Siemens Logo Aufbau
Siemens Logo Aufbau

Leider sind im Internet keine Anschlußbelegungen zu finden. (Oder ich habe nicht gründlich genug gesucht 😉

Tasten
Tasten

 

Stecker
Stecker

Anbei eine erste Untersuchung der Belegung der auf dem Display vorhandenen Buchse:

Buchse beschriftet
Buchse beschriftet

Hierbei meint T_xx den jeweiligen Anschluß des Tastenfeldes, D0 .. 7 sind die Datenleitungen des LCD, CONx meint die LCD-Steuersignale (Diese Leitungen gehen alle zum LCD_Controller)

 

EDIT: Im Mikrocontroller-Forum war jemand schneller und hat bereits die vollständige Belegung herausgefunden und getestet.

Anzeigemodul mit VQE21 (alias „die grüne Pest“)

Die VQE21-Lichtschachtanzeigen aus DDR-Produktion gibt es bei Pollin seit langem als häufige Beilage in jedem LCD/LED-Sortiment. Diese Anzeigen sind allerdings nur sehr eingeschränkt zu gebrauchen. Eine Idee, den Nutzen etwas zu erhöhen, ist das Kombinieren zweier Anzeigen, indem die zweite auf den Kopf gestellt angefügt wird. So hat man immerhin 2,5 Stellen („188“) und weitere Segmente für Funktionsanzeigen als 7-Segment-Anzeige zur Verfügung, statt nur 1,5 Stellen.

Der Schaltplan ist eine eingekürzte Version und deshalb etwas unübersichtlich. Ursprünglich war eine Doppelanzeige geplant, also insgesamt vier VQE21.

 

VQE21 Schaltplan
VQE21 Schaltplan
VQE21 Layout
VQE21 Layout

 

 

 

 

 

 

 

 

 

Platine oben
Platine oben
Platine unten
Platine unten

 

 

 

 

 

 

 

 

 

 

Seitenansicht
Seitenansicht
Draufsicht
Draufsicht

 

 

 

 

 

 

Ansicht von unten
Ansicht von unten

LC204VL LED Display aus dem Pollin-LED/LCD Sortiment

Dieses vierstellige rot leuchtende LED-Display mit zusätzlichen Symbolen und gemeinsamer Kathode ist häufiger Bestandteil des Pollin-LED-/LCD-Sortimentes.

Nominell sollen die LED rot sein, es ist aber eher ein rötlich-oranges Leuchten. Die äußeren Abmaße sind 36 mm x 11 mm (B x H). Die Ziffern sind 6,2 mm hoch. Die Pins sind als DIL angeordnet und im normalen Raster (2,54 mm).

Maße aus dem Datenblatt
Maße aus dem Datenblatt

Die LEDs (zumindest die vier Ziffernstellen) sind nur per Multiplex mit gemeinsamer Kathode betreibbar.

Pinout aus dem Datenblatt
Pinout aus dem Datenblatt

Die elektrischen und optischen Parameter sind der folgenden Tabelle zu entnehmen:

characteristics from datasheet
characteristics from datasheet

Schaltungen für das Multiplexen von LED-Anzeigen gibt es zu hauf im Internet zu finden, benutzbar ist z. B. ein MAX7219.

Ich habe interessehalber eine andere Variante ausprobiert. Gleich vorweg, diese kann ich nicht zur Nachahmung empfehlen. Da ich schon öfter gelesen hatte, dass man eine LED zwischen zwei Pins eines Mikrocontrollers ohne Vorwiderstand betreiben kann, habe ich dies mit diesem Display ausprobiert.

Aufbau
Aufbau

Die Nachteile dieses Verfahrens sind jedoch offensichtlich. Je mehr Segmente und Ziffern eingeschaltet sind, desto dunkler wird die Anzeige. Die Helligkeit hängt also sehr stark vom angezeigten Inhalt ab. Außerdem haben die Exemplarstreuungen sowohl bei der Anzeige als auch beim Controller deutlichen Einfluß auf die Helligkeit. Auf den Fotos ist das nicht so deutlich erkennbar, wenn man die Anzeige jedoch vor sich hat, ist dieser Effekt sehr deutlich ausgeprägt.

Anzeige
Anzeige

Unter ungünstigen Umständen (z. B. höhere Temperatur) kann der Controllerausgang mit dem LED-Strom überlastet werden.

STM8S103F3P6 Entwicklungsboard Pollin

Pollin verkauft derzeit ein STM8S Entwicklungsboard:

Entwicklungsboard
Entwicklungsboard

Dieses Board ist mit dem STM8S103F3P6 ausgestattet:

stm8s103f3 Pinout
stm8s103f3 Pinout

Leider ist das eine etwas anders ausgestattete Version des STM8S im Vergleich zum weit verbreiteten STM8-discovery-Board. Das heißt auch, dass die meisten im Internet verfügbaren Programme angepasst werden müssen. Hinzu kommt, dass es drei verschiedene Compiler für die Prozessorserie von ST gibt. Nächste Erschwernis ist, dass in den Beispielen eine von ST verfügbar gemachte Firmware-Bibliothek benutzt wird. Diese ist allen auf der ST-Seite downloadbaren Beispielen beigefügt. Ein mit den genannten Eigenschaften versehenes tutorial für das discovery-Board findet sich unter benryves.com.

Für IAR gibt es deutlich weniger Beispiele, dabei ist auch diese Entwicklungsumgebung bis 8kByte-Flashspeicher frei, mit einem sehr guten Debugger ausgestattet, dem Hörensagen nach unheimlich gut im Optimieren und auch für wirklich große Projekte geeignet:

IAR embedded workbench
IAR embedded workbench

Benötigt wird weiterhin ein ST-Link/V2, den man sehr preiswert kaufen kann, allerdings nur in China und als Klon. Etwas teurer, jedoch nicht so teuer wie die Originale, ist der bei roboterbausatz.de erhältliche Klon:

Dieser ist offensichtlich 100% kompatibel, da ST die Schaltung freigegeben hat. So ist der Klon mit der Originalfirmware von ST versehen und kann auch alle updates übernehmen.

Ein Beispielprojekt, welches per timer-PWM mit einer RGB-LED durch die Farben fadet, ist hier zum download Demoprojekt verfügbar. Es basiert auf einem firmware-Beispiel für die timer von ST. Dieses wurde mit einer huetoRGB-Funktion aus einem Arduino-Buch erweitert, um Farbwechsel zu generieren.

Der Hardware-Aufbau auf einem kleinen Steckbrett ist trivial:

RGB-LED STM8S103F3P6 Steckbrett
RGB-LED STM8S103F3P6 Steckbrett

VQE21F 1,5 stelliges LED Display von Pollin zerlegt

Aus purer Langeweile und aufgrund eines interessanten Beitrages im Mikrocontroller-Forum: alte DDR-Lichtschachtanzeigen VQBxx tunen habe ich heute eins dieser Displays, die in Massen dem Pollin LED-LCD-Sortiment beiliegen, zerlegt.

VQE21 zerlegt
VQE21 zerlegt

 

VQE21 zerlegt Detail
VQE21 zerlegt Detail

Wie der Beitrag im Forum zeigt, ließe sich dieses Display mit modernen Einzel-LED nach-/aufrüsten. Das habe ich aber nicht mehr probiert.

Temperatur und Luftfeuchtigkeit messen mit dem DHT-11 und Arduino

Heute war eine Arduino-Spielerei fällig. Pollin verkauft derzeit ein ArduinoClone Pro Mini Board mit dem ATMega 168. Ein FTDI-breakout-Adapter von Watterott lag noch rum, ein DHT-11-Board ebenso. In weniger als 10 Minuten war die Software aus dem Internet heruntergeladen, alles zusammengesteckt und programmiert.

Ein paar Bilder:

FTDI breakout (USB-serial Adapter)
FTDI breakout (USB-serial Adapter)

 

alles zusammengesteckt ...
alles zusammengesteckt …

 

... und gestartet.
… und gestartet.

 

Hierfür benötigt man keine bzw. kaum Elektronik- oder Programmierkenntnisse. Es ist schon beeindruckend, was moderne Technik und entsprechende Abstraktion (Arduino-Konzept) möglich macht. Natürlich ist diese Schaltung so nicht praktisch nutzbar, aber auf die geschilderte Weise ist praktisch jederzeit ein schnelles proof of concept möglich. (mit z. B. anschließender klassischer Umsetzung per PCB- und Softwareentwicklung in C sowie Einbau in ein fertiges Gerät)